NEWARK WEATHER

Coronavirus mutations aren’t slowing down


Placeholder while article actions load

During those terrifying early days of the pandemic, scientists offered one piece of reassuring news about the novel coronavirus: It mutated slowly. The earliest mutations did not appear to be consequential. A vaccine, if and when it was invented, might not need regular updating over time.

This proved overly optimistic.

The coronavirus, SARS-CoV-2, has had billions of chances to reconfigure itself as it has spread across the planet, and it continues to evolve, generating new variants and subvariants at a clip that has kept scientists on their toes. Two-and-a-half years after it first spilled into humans, the virus has repeatedly changed its structure and chemistry in ways that confound efforts to bring it fully under control.

And it’s not showing signs of settling down into a drowsy old age. Even with all the changes so far, it still has abundant evolutionary space to explore, according to virologists who are tracking it closely. What that means in practical terms is that a virus that’s already extremely contagious could become even more so.

“This virus has probably got tricks we haven’t seen yet,” virologist Robert F. Garry of Tulane University said. “We know it’s probably not quite as infectious as measles yet, but it’s creeping up there, for sure.”

The latest member of the rogue’s gallery of variants and subvariants is the ungainly named BA.2.12.1, part of the omicron gang. Preliminary research suggests it is about 25 percent more transmissible than the BA.2 subvariant that is currently dominant nationally, according to the Centers for Disease Control and Prevention. The CDC said the subvariant has rapidly spread in the Northeast in particular, where it accounts for the majority of new infections.

“We have a very, very contagious variant out there. It is going to be hard to ensure that no one gets covid in America. That’s not even a policy goal,” President Biden’s new covid-19 coordinator, Ashish Jha, said in his inaugural news briefing Tuesday.

He was answering a question about Vice President Harris, who recently tested positive for the virus and went into isolation. Harris had recently been boosted for the second time — her fourth shot of vaccine.

Her case highlights what has become painfully obvious in recent months: No amount of vaccination or boosting can create a perfect shield against infection from SARS-CoV-2. What the vaccines do very well, however, is greatly reduce the risk of severe illness. That is hugely consequential as a matter of public health, as is the wider use of therapeutics, such as the antiviral Paxlovid.

The vaccines currently deployed were all based on the genomic sequence of the original strain of the virus that spread in late 2019 in Wuhan, China. They essentially mimic the spike protein of that version of the virus and trigger an immune response that is protective when the real virus shows up.

But the variants that have emerged can evade many of the neutralizing antibodies that are the immune system’s front line of defense.

“It’s evolving at a fairly rapid rate,” said Jesse Bloom, a computational biologist at the Fred Hutchinson Cancer Research Center in Seattle. “I do think we need to aggressively consider whether we should update vaccines, and do it soon.”

BA.2.12.1 brings the novel coronavirus up another step on the contagiousness scale. Its close relative, BA.2, was already more transmissible than the first omicron strain that hit the country in late 2021.

And omicron was more transmissible than delta, and delta was more transmissible than alpha, and alpha was more transmissible than earlier variants that did not have the glory of a Greek alphabet name.

Most mutations are not advantageous to the virus. But when a mutation offers some advantage, the process of natural selection will favor it.

There are two fundamental ways that the virus can improve its fitness through mutation. The first could be described as mechanical: It can become innately better at infecting a host. Perhaps it improves its ability to bind to a receptor cell. Or perhaps the mutation allows the virus to replicate in greater numbers once an infection has begun — increasing the viral load in the person and, commensurately, the amount of virus that is shed, potentially infecting other people.

The other strategy involves the workaround of immunity. The human immune system, when primed by vaccines or previous infection to be alert for a specific virus, will deploy antibodies that recognize and neutralize it. But mutations make the virus less familiar to the immune system’s front-line defense.

The omicron subvariants keep coming: Scientists in South Africa have identified BA.4 and BA.5, which have mutations that were seen in earlier variants and are associated with immune evasion. Caseloads there are rising. New laboratory research, posted online Sunday but not yet peer-reviewed, indicated that the emerging subvariants are adept…



Read More: Coronavirus mutations aren’t slowing down