NEWARK WEATHER

Vorticity and divergence at scales down to 200 km within and around the polar cyclones of


  • Orton, G. S. et al. The first close-up images of Jupiter’s polar regions: results from the Juno mission JunoCam instrument. Geophys. Res. Lett. 44, 4599–4606 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Adriani, A. et al. Clusters of cyclones encircling Jupiter’s poles. Nature 555, 216–219 (2018).

  • Tabataba-Vakili, F. et al. Long-term tracking of circumpolar cyclones on Jupiter from polar observations with JunoCam. Icarus 335, 113405 (2020).

    Article 

    Google Scholar
     

  • Adriani, A. et al. Two-year observations of the Jupiter polar regions by JIRAM on board Juno. J. Geophys. Res. https://doi.org/10.1029/2019JE006098 (2020).

  • Mura, A., Adriani, A. & Bracco, A. Oscillations and stability of the Jupiter polar cyclones. Geophys. Res. Lett. 48, e2021GL094235. https://doi.org/10.1029/2021GL0942235 (2021).

  • Grassi, D. et al. First estimate of wind fields in the Jupiter polar regions from JIRAM-Juno images. J. Geophys. Res. Planets 123, 1511–1524 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Orton, G. S. & Yanamandra-Fisher, P. A. Saturn’s temperature field from high-resolution middle-infrared imaging. Science 307, 696–698 (2005).

    ADS 
    Article 

    Google Scholar
     

  • Dyudina, U. A. et al. Dynamics of Saturn’s south polar vortex. Science 319, 1801 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Dyudina, U. A. et al. Saturn’s south polar vortex compared to other large vortices in the Solar System. Icarus 202, 240–248 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Sommeria, J., Meyers, S. & Swinney, H. Laboratory model of a planetary eastward jet. Nature 337, 58–61 (1989).

    ADS 
    Article 

    Google Scholar
     

  • Allison, M., Godfrey, D. & Beebe, R. A wave-dynamic interpretation of Saturn’s polar hexagon. Science 247, 1061–1063 (1990).

    ADS 
    Article 

    Google Scholar
     

  • Aguiar, A. C. B., Read, P. L., Wordsworth, R. D., Salter, T. & Yamazaki, Y. H. A laboratory model of Saturn’s North Polar Hexagon. Icarus 206, 755–763 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Sanchez-Lavega, A. et al. The long- term steady motion of Saturn’s hexagon and the stability of its enclosed jet stream under seasonal changes. Geophys. Res. Lett. 41, 1425–1431 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Morales-Juberias, R., Sayanagi, K. M., Simon, A. A., Fletcher, L. N. & Cosentino, R. G. Meandering shallow atmospheric jet as a model of Saturn’s north-polar hexagon. Astrophys. J. Lett. 806, 1–6 (2015).

  • Scott, R. K. Polar accumulation of cyclonic vorticity. Geophys. Astrophys. Fluid Dynam. 105, 409–420 (2011).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • O’Neill, M. E., Emanuel, K. A. & Flierl, G. R. Polar vortex formation in giant-planet atmospheres dues to moist convection. Nat. Geosci. 8, 523–526 (2015).

    ADS 
    Article 

    Google Scholar
     

  • O’Neill, M. E., Emanuel, K. A. & Flierl, G. R. Weak jets and strong cyclones: shallow-water modeling of giant planet polar caps. J. Atmos. Sci. 73, 1841–1855 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Brueshaber, S. R., Sayanagi, K. M. & Dowling, T. E. Dynamical regimes of giant planet polar vortices. Icarus 323, 46–61 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Siegelman, L., Young, W. R. & Ingersoll, A. P. Polar vortex crystals: emergence and structure. Proc. Natl Acad. Sci. USA 119, e2120486119 (2022).

    MathSciNet 
    Article 

    Google Scholar
     

  • Siegelman, L. et al. Moist convection drives an upscale energy transfer at Jovian high latitudes. Nat. Phys. 18, 357–361 (2022).

  • Li, C., Ingersoll, A. P., Klipfel, A. P. & Brettle, H. Modeling the stability of polygonal patterns of vortices at the poles of Jupiter as revealed by the Juno spacecraft. Proc. Natl Acad. Sci. USA 117, 24082–24087 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Thomson, S. I. & McIntyre, M. E. Jupiter’s unearthly jets: a new turbulent model exhibiting statistical steadiness without large-scale dissipation. J. Atmos. Sci. 73, 1119–1141 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Rubio, A. M., Julien, K., Knobloch, E. & Weiss, J. B. Upscale energy transfer in three-dimensional rapidly rotating turbulent convection. Phys. Rev. Lett. 112, 144501 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Novi, L., von Hardenberg, J., Hughes, D. W., Provenzale, A. & Spiegel, E. A. Rapidly rotating Rayleigh-Benard convection with a tilted axis. Phys. Rev. E 99, 053116 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Yadav, R. K., Heimpel, M. & Bloxham, J. Deep convection-driven vortex formation on Jupiter and Saturn. Sci. Adv. 6, eabb9298 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Kapyla, P. J., Mantere, M. J. & Hackman, T. Starspots due to large-scale vortices in rotating turbulent convection. Astrophys. J. 742, 34 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Heimpel, M., Gastine, T. & Wicht, J. Simulation of deep-seated zonal jets and shallow vortices in gas giant atmospheres. Nat. Geosci. 9, 19–23 (2016).

  • Cai, T., Chan, K. L. & Mayr, H. G. Deep closely packed long-lived cyclones on Jupiter’s poles. Planet. Sci. J. 2, 81 (2021).

    Article 

    Google Scholar
     

  • Ingersoll, A. & Cuzzi, J. Dynamics of Jupiter’s cloud bands. J. Atmos. Sci. 26, 981–985 (1969).

  • Limaye, S. Jupiter: new estimates of the mean zonal flow at the cloud level. Icarus 65, 335–352 (1986).

    ADS 
    Article 

    Google Scholar
     

  • Li, L. M. et al. Life cycles of spots on Jupiter from Cassini images. Icarus 172, 9–23 (2004).

    ADS 
    Article 

    Google Scholar
     

  • Garcia-Melendo, E., Perez-Hoyos, S., Sanchez-Lavega, A. & Hueso, R. Saturn’s zonal wind profile in 2004–2009 from Cassini ISS images and its long-term variability. Icarus 215, 62–74 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Dowling, T. A relationship between potential vorticity and zonal wind on Jupiter. J. Atmos. Sci. 50, 14–22 (1993).

    ADS 

    Google Scholar
     

  • Achterberg, R. & Ingersoll, A. A normal-mode approach to Jovian atmospheric dynamics. J. Atmos. Sci. 46, 2448–2462 (1989).

    ADS 

    Google Scholar
     

  • Wong, M. H., de Pater, I., Asay-Davis, X., Marcus, P. S. & Go, C. Y. Vertical structure of Jupiter’s Oval BA before and after it reddened: what changed? Icarus 215, 211–225 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Hammel, H. et al. HST Imaging of atmospheric phenomena created by the impact of Comet Shoemaker-Levy-9. Science 267, 1288–1296 (1995).

    ADS 
    Article 

    Google Scholar
     

  • Rhines, P. Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417–443 (1975).

    ADS 
    MATH 
    Article 

    Google Scholar
     

  • Theiss, J. Equatorward energy cascade, critical latitude, and the predominance of cyclonic vortices in geostrophic turbulence. J. Phys. Oceanogr. 34, 1663–1678 (2004).

    ADS 

    Google Scholar
     

  • Scott, R. K. & Polvani, L. M. Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci. 64, 3158–3176 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Mied, R. & Lindemann, G. Propagation and evolution of cyclonic Gulf-Stream rings. J. Phys. Oceanogr. 9, 1183–1206 (1979).

    ADS 
    Vorticity and divergence at scales down to 200 km within and around the polar cyclones of